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ABSTRACT

This paper examines the impact of unreliable transit service on transit user costs with the goal of
increasing the accuracy of mode choice models. The concept advanced here is to include
explicitly in the formulation of mode choice models the anxiety experienced by passengers when
service is unreliable due to late departure or longer than expected in-vehicle travel time. We
model this anxiety as a generalized cost penalty which is added to actual in-vehicle time. The
magnitude of the penalty depends on the traveler’s assessment of the likelihood of arriving on
time at his destination. We feel this formulation of anxiety is behaviorally representative.

To test the impacts of our formulation, we generate a simulation model that quantifies the
anxiety component of generalized cost for 10,000 travelers with various aversions to risk for
travel between station pairs with different observed reliabilities.  Our results suggest that
primarily for risk averse travelers, but also for other classes, anxiety may constitute very high
percentages of total generalized cost which may explain many travelers’ unwillingness to choose
transit in cases where deterministic models suggest they will.

Calibrating a model of this type presents substantial challenges. We introduce an approach that
we are currently pursuing to gather actual anxiety levels as a function of transit travel reliability.
We conclude with comments on future research directions.
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INTRODUCTION

In the past decade, the importance of public transportation in achieving balanced transportation
has increased throughout North America. In Ontario, Canada, for example, the Provincial
Government is proposing transit projects in excess of $17.5B prior to 2020 (1). As a result,
models that are used to estimate transit ridership have gained increasing attention from
transportation planners and engineers. Though various mode choice models exist, nearly all are
based on a comparison of user cost (or disutility) for travel by available modes. In order for the
models to be effective, the modal costs should be representative of the *“real-world” costs
experienced by users.

The way in which transit user costs are typically represented is through generalized costs which
are calculated as a linear sum of monetary costs (the fare) and a series of travel time components
converted to monetary units assuming a value of time. Most commonly included times in a
generalized cost equation are access to the transit system, waiting for a transit vehicle, in-vehicle,
transfers (where appropriate) and sometimes egress from the vehicle to the final destination.

In conventional generalized cost formulations, transit costs are most frequently considered to be
deterministic. While a deterministic representation of access time is probably sufficient, it is
quite evident that great variability exists in waiting times and in-vehicle times and, as such, total
costs experienced by transit users. Generalized cost models should be constructed to incorporate
stochastic cost components for waiting and in-vehicle times.

The limiting factor to developing stochastic models of generalized costs was the availability of
data for on-time system performance. Given the increase in the use of Automatic Vehicle
Location (AVL) for bus systems, it has become much less difficult to produce distributions of
these travel time components. The stochasticity of travel cost components have been reflected
by Bates (2) Casello et al. (3) in mode choice models. These formulations include penalties for
arriving prior to or later than a desired arrival time with the likelihood of experiencing arrival
penalties estimated from empirically derived observations of transit service reliability.

A second source of stochasticity in generalized cost models is derived from users’ cost
perceptions which may differ based on trip purpose or, alternatively traveler characteristics (risk
averse, risk neutral or risk tolerant). This variability in users’ perceptions and therefore
generalized cost has been modeled by defining penalties as a function of traveler class.

In this paper, we extend previous models to investigate further users’ perceptions of in-vehicle
time. The model is grounded in the idea that unreliable departure times or in-vehicle times
create passenger anxiety which influence traveler perception of in-vehicle time. The concept
developed here formally presents a methodology to complement typical generalized cost
components with “anxiety costs” which are computed based upon stochastic departure times, in-
vehicle times, and potential late penalties for various traveler classes. We suggest that this
measurement of anxiety in light of stochastic travel components better represents traveler
perception and is therefore more behaviorally representative than previous efforts.
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The remainder of the paper is organized as follows. We first briefly review the literature to
document previous efforts at incorporating reliability in transit generalized cost formulations.
We next present the theoretical motivation for and the details of the methodology developed.
We then demonstrate a simplified example using data from the Regional Municipality of
Waterloo. After the case study, we describe the efforts necessary to calibrate a model of this
type. We conclude with comments on limitations and future research needs.

LITERATURE REVIEW

Mode choice models based on user cost have been used for decades. A history and detailed
explanation of these models’ formulation, calibration and solution are given by Ortuzar and
Williumsen (4). The basic formulation of generalized cost for transit used in this paper models
that by Kittelson et al. (5). More detailed generalized cost models, upon which we rely heavily,
explicitly treat the penalties associated with discrete departure times of transit vehicles (2) as
well as unreliable service(6).

This paper builds heavily upon work done by the authors in 2009 (3). For a much more detailed
literature review, the reader is directed to the lead author’s most recent publication (7).

The concept of anxiety as a travel cost has been discussed by Van der Waard (8), Hickman and
Wilson (9) and Bhat and Sardesai (10) amongst others. Anxiety has been explicitly considered
as part of a boundedly rational model proposed by Mahmassani and Liu (11) in describing auto
route choice. Guiver (12) describes qualitatively the concept of travel anxiety on public
transport. We are unaware of any study that proposed to quantify the direct cost of anxiety in
unreliable transit networks.

METHODOLOGY

As noted above, nearly all transit generalized cost functions assume in-vehicle time is least
onerous, and constant. In our model, we relax this assumption as follows. We assume that the
traveler disaggregates in-vehicle time as scheduled in-vehicle time (SIVT) and unscheduled in-
vehicle time (LATE). Mathematically, LATE is computed as:

LATE = AIVT — SIVT Eq.1

Where AIVT is the actual in-vehicle time and all units are minutes. If AIVT is less than SIVT,
then LATE is less than O, or an early arrival. To these two components, we add a third term,
ANX; that reflects anxiety felt in cases where service is behind schedule.

If we assume the traveler chooses a bus departure for which the scheduled arrival time (SAT) at
his destination is earlier than his necessary arrival time (NAT), we can evaluate the following
scenarios:
1. If that traveler boards the vehicle at or before the scheduled departure time (SDT), on
very reliable systems, the traveler can be reasonably certain that he will arrive on time.
In unreliable systems, despite boarding exactly on time, the traveler still has some
uncertainty that the in-vehicle travel time will be sufficiently short to meet his necessary
arrival time.
2. If the actual in-vehicle time (AIVT) is less than or equal to the scheduled in-vehicle time
(SIVT), then throughout the trip the passenger has decreasing concern about arriving late.
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On the reliable system, the passenger may feel nearly zero anxiety. On the unreliable
system, the traveler feels slightly higher anxiety on early segments of the trip.

3. If the bus departs later than the SDT, then the traveler begins the in-vehicle portion of the
trip with some anxiety about his likelihood of arriving on time. Subsequent trip segments
are perceived as “higher cost” than the case where the bus departs on time.

4. Recurringly during the trip (say at each stop), the traveler evaluates his likelihood of
arriving on time based on scheduled travel time and historical knowledge. If the bus
“catches up” (recovers lost time) and regains the scheduled time, then the traveler’s
anxiety lessens and is eventually eliminated. In this case, the traveler experiences a
shorter than expected SIVT and no late penalty. In our formulation, however, we
explicitly quantify the cost associated with the anxiety felt on the early segments of the
trip.

5. If the bus remains or falls further behind schedule, the traveler’s anxiety grows during the
trip until at some point, there is 0 probability of arriving on time. At this point, the
anxiety for subsequent sections is constant at the maximum value.

The travel time and perceived anxieties for scenarios 2, 4 and 5 are shown in Figure 1. Here, the
bus route contains an origin, O, a destination, D, and two intermediate stations Z, and Y. The top
part of the figure shows the time distance diagram of the bus relative to the SDT, the SAT and
the NAT. The bottom part of the figure shows the probability of late arrival under two
conditions: generally reliable bus service (R) and unreliable service (UR). Note that the
probability of being late, and therefore passenger anxiety, is always lower in the reliable service
case.

In the first case, the bus departs precisely at the scheduled departure time and the in-vehicle
travel time is equal to the scheduled time. The arrival time at the destination occurs earlier the
necessary arrival time. Anxiety begins with a positive value, but decreases after each station
because the traveler recognizes the service as on time.

In the second case, the bus departs late, resulting in higher initial anxiety than in the previous
case. During the trip, however, the bus is able to recover time. At each station, the traveler’s
anxiety is reduced again because he recognizes that his probability of late arrival is decreasing.
As in the first case, the actual arrival time coincides with the schedule arrival time and the final
probability of late arrival is zero.

In the final case, the bus both departs late and experiences longer than expected travel times. In
this case, the initial anxiety is as high as in the previous case. As the trip progresses, the
likelihood of an on-time arrival decreases and, the probability of late arrival increases towards
one. By the time the bus reaches station Y, he is certain that an on-time arrival is not possible.
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FIGURE 1 The Relationship between Departure Time, In-vehicle Time and Anxiety

To quantify the costs of traveler anxiety we propose the following method. We assume the
traveler assesses his likelihood of on-time arrival at each stop from boarding to destination along
the route which, in turn, generates a level of anxiety. We further assume that the traveler’s
perception of the next inter-station in-vehicle travel time is dependent on the anxiety felt at the
previous stop. We calculate the anxiety cost on a segment from station i to station i+1 as the
product of the probability of being late calculated at station i and the actual travel time from i to
i+1.

Mathematically, this is expressed as:
ANX;j11 = Plge - AIVT 344 Eq. 2

To compute the total anxiety experienced over the entire trip (from origin O, to destination D),
we sum over all stations from origin to destination.
ANXop = %79 Pigee - AIVT 341 EQ.3

Equation 3 reflects the computation of the areas under the curves shown in the lower half of
Figure 1.
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The total contribution of in-vehicle cost to generalized cost with unreliable service, GCg, is then
the sum of SIVT, LATE and the anxiety penalty:

GCRr(AIVT,p) = SIVTop + aLATEp + BANX,yp EQ.4

Where o and £ are calibration parameters that weigh the relative importance of each component.
As discussed above, in the case where AIVT<SIVT, then o defaults to 1 and LATE is actually
negative, reducing the generalized cost of in-vehicle travel time.

Our anxiety measure depends upon a traveler’s ability to assess the likelihood of being late from
his current point to the destination, given the travel time experienced from the origin to his
current point. In reality, this depends upon a traveler’s familiarity with the system and historical
knowledge of expected travel times. In our model, we compute directly the probability of
arriving late to the destination having traveled to each station i.  This probability is the
likelihood of experiencing a travel time from i to D that exceeds the difference between the NAT
and the arrival time at i; the arrival time at i is given by the sum of the actual departure time from
the origin (ADTo) and the actual in-vehicle time to i, (AlVTo;). Mathematically, this is
expression is:

tate = P(AIVT;, > NAT — (ADT( + AIVT,))) Eq.5

All terms on the right hand side of the inequality - the necessary arrival time, the actual departure
time from the origin, and the travel time from the origin to i - are known. As such, the
probability of an on-time arrival is simply given by the probability of a travel time from i to D
less than a constant. This is a cumulative probability distribution function for travel time
between stations. Using Automatic Vehicle Location (AVL) data, it is a straightforward exercise
to derive these CDFs from which we can easily solve equation 5 for any station i along the route.

Figure 2 displays the logic of the approach graphically. At the origin, there is a distribution of
potential departure times for the service around scheduled departure time. There is also a
distribution of actual travel times from O to D, shown on the right hand side of Figure 2. The
likelihood of being late with an on-time departure can be seen by area under the dashed
distribution that exceeds the NAT. In this case, the actual departure time of the vehicle from the
origin occurs sometime later than the scheduled time. This shifts the distribution of travel times
to the right by the same amount as the lateness of departure which increases the likelihood of
being late. This is shown by the increase in area under the solid curve which falls to the right of
the necessary arrival time along the O line.
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FIGURE 2 Graphical Representation of Probability Functions

Moving up from the origin to station Z, two characteristics change. First, the travel time
distribution from Z to D narrows relative to the travel time distribution from O to D reflecting the
shorter distance remaining to travel. Second, because the service has fallen further behind from
O to Z, the distribution of travel times from Z to D has shifted right by the amount the service is
late, increasing the probability of a late arrival. At Y, the distribution once again narrows due the
proximity to the distribution; also from Z to Y, the bus recovers time, shifting the travel time
distribution left and decreasing the likelihood of late arrival.

APPLICATION OF METHODOLOGY

To test the implications of the above formulation, we develop a simulation model for the bus
system serving the Regional Municipality of Waterloo (Ontario). The Region’s transit operator,
Grand River Transit (GRT), runs iXpress service, a 33 km limited-stop route with 13 stops. The
alignment, shown in Figure 3 connects four downtowns - Waterloo, Kitchener and two in
Cambridge - as well as two universities, office complexes, major hospitals and regional shopping
centers. iXpress operates throughout the day with 15 minute headways and vehicles are
equipped with AVL technology.
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FIGURE 3 iXpress Route Serving Waterloo, Kitchener and Cambridge

Model Formulation

We are interested in understanding how reliability (or the lack thereof) influences users’
perception of in-vehicle travel time, and how those perceptions should be reflected in generalized
costs. To this end, we simulate 10,000 peak hour trips between two origin destination pairs. The
first trip begins at the Charles St. Terminal in Kitchener and ends at the route’s southern
terminal, Ainslie St. Including the boarding station, there are five locations at which the
probability of being late must be evaluated. The second trip considered originates at Fairview
Mall traveling northbound to Conestoga Mall, with nine intermediate stops. Table 1 shows a
statistical representation of travel times between each station pair derived from more than 600
actual AVL observations of travel time.

Table 1 Statistical Parameters for the Station Pairs Modeled

Charles St. to | Fairview to
Statistical Characteristic Ainslie Conestoga
Scheduled travel time (min) 42 43
50" percentile difference between SDT and ADT (min) 0.40 0.40
90" percentile difference between SDT and ADT (min) 1.92 4.62

The data in Table 1 suggest that while 50% of buses depart both Charles St. and Fairview with
0.40 minutes (24 seconds) of the scheduled departure time. However, the departures from
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Fairview have much greater variance than those from Charles St. Only 10% of the buses leaving
Charles St. do so more than 1.92 minutes after the scheduled departure time. In contrast, 10% of
buses leaving Fairview towards Conestoga leave more than 4.62 minutes late. This may indicate
that passengers leaving Fairview experience greater anxiety on early segments of their trips.

For each of the 10,000 trips, we generate travelers with one of three different but equally likely
trip characteristics. A traveler may be risk averse, moderately risk averse or risk neutral. The
perception of potential delays decreases in severity with decreasing risk aversion. As such, the
values for a (when LATE>0) are 3, 2 and 1 for risk averse, moderately risk averse and risk
neutral passengers respectively. Similarly, the values for g are 2.5, 1.85 and 1.0 in the same
order of passenger types.

For each traveler, we next estimate necessary arrival times that are uniformly distributed between
two subsequent arrivals at the destination station. To model bus service, we use observed AVL
data to generate the following parameters in the simulation model:
1. Actual departure time from the origin station;
2. Actual travel time between each set of stops;
3. Probability of being late at the destination given the actual departure time, the travel time
from the origin to the current stop, and the necessary arrival time.

Model Results

For each traveler, the model outputs the AIVT, the corresponding late penalty (or benefit), the
probabilities of late arrival computed at each stop, and the total generalized cost considering
reliability, GCr. We present three comparisons. First, we demonstrate how the range of
observed GCg values compare to the conventional GC¢ estimates that are deterministic. The
results for two traveler cases, the Risk Averse Person (RAP) and the Risk Neutral Person (RNP)
are shown on the left and right respectively for the Fairview trip in Figure 4 below. The heavy
vertical lines represent GCc. The intervals represent eight units of generalized cost.

Risk Averse Passenger GC for a trip from Fairview to Conestoga

1200 g Risk Neutral Passenger GC for a trip from Fairview to Conestoga
T T T T

Number of Observations
® =]
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Mumber of Observations
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GCriminutes)

GC, GeC,
Figure 4 Comparing Generalized Cost with and without Reliability Considerations
The model predicts approximately 3300 RAP and RNP travelers. From the figure, we see that

approximately 2300 RAP (or 70%) experience GCg that are within one interval of the GCe.
Similarly, 2600 RNP travelers are within the same tolerance. However, we notice that for RAP,
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there exists a long tail to the right, indicating that for many RAP travelers, the potential exists to
experience very unreliable, very high cost travel by transit. In fact, our model predicts that 758
RAP travelers experiences GCg in excess of 60, or 50% higher than what would be predicted by
GCc. For RNP, the number of passengers experiencing very high GCg is less, about 312, but
still not insignificant.

Next, we demonstrate how GCg differs for the same traveler type, Risk moderate passengers
(RMP), for the two station pairs selected for analysis. Figure 5 shows the range of GCg results
for the lower reliability pair (Fairview to Conestoga) on the left and the higher reliability pair
(Charles St. to Ainslie) on the right. Again, the intervals displayed represent eight minutes.

Risk Modarate Passenger GC for a trip fram Fairview & Conestaga 0 Risk Modsrats Psssanger GCfor a trip om Charlss Terminalto Ainglis

8|00

Frequency
ber of Observations

Mumit

50 100 150 200 250 50 150 200 250

GCr (minutes) GCr (minutas)

Figure 5 Reliability Influences on Travelers with Different Risk Tolerances

For lower values of GCg, the frequencies of occurrence are very similar. Both station pairs show
high concentrations of observations (approximately 2500 in both cases) within one interval of the
expected GCg. It is evident, however, that the unreliable travel pair again has many more
observations of very high GCg when compared to the higher reliability case. In fact, the number
of GCr observations exceeding 80 (or approximately double the deterministic GC¢) is 330 (10%
of trips) in the unreliable case, but only 152 (approximate 5%) for the reliable travel pair.

Finally, it is interesting to understand the relative importance of the anxiety component to overall

GCg. To this end, we plot in Figure 6 a histogram of the percent of total GCr attributable to
anxiety for RAP (left) and RNP (right) travelers. In this case, the intervals are 5%.

Enxiaty Contribution to GCr for RAP (Fairview to Conestoga)
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Figure 6 Percent of Total Generalized Cost Attributable to Anxiety
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As in the previous example, anxiety has much greater impacts on risk averse passengers than on
risk neutral. For nearly 2,000 RAP, anxiety constitutes 10% or less of the total GCr while for
RNP, that number increases to more than 2400. Also similar to the previous example, the RAP
have a much longer right tail of the distribution, indicating that in many cases, 458 or nearly
14%, anxiety is the primary component of GCg. For only 125 RNP, anxiety penalties exceed
50% of GCR; anxiety never constitutes more than 70% of GCg for RNP.

CALIBRATING THE MODEL

The model results presented above make assumptions about the relative importance of longer
than expected in-vehicle time and the anxiety felt as the likelihood of late arrivals increases. At
this moment, we have little basis for the relative weights assumed other than they are within the
range of values presented in the literature (5) for other travel time components and they follow
the logic that a risk averse traveler would perceive late arrivals as less tolerable than a risk
moderate or risk neutral passenger. Calibration of the magnitude of the anxiety penalty is
obviously necessary to make functional the model form we present here.

In order to gather data on in-vehicle anxiety levels, we propose to utilize GPS enabled, hand held
devices to query bus passengers regarding current levels of dissatisfaction. These devices can be
programmed with all transit schedules; their GPS capabilities allow the devices to identify the
current route and schedule adherence without user input (13). We are in the process of
developing code through which the hand held device recognizes stop locations at which it
computes the existing schedule adherence and probability of on-time arrival. The user will
automatically be prompted by the device to indicate his current level of anxiety with the route
performance. The data gathering may include simple drop-down menus with quantitative inputs.
One example question may be to ask respondents to indicate their expected “likelihood of on-
time arrival” and provide options ranging from 0%, 20%, 40% through 100%. These user
perceptions can then be directly compared to the “actual” likelihood derived from empirical
observations. The differences between perception and reality help to inform the nature of a
transit rider’s anxiety.

Alternatively, users may be prompted to provide qualitative indicators of anxiety using voice
recording. A range of anxiety levels may be provided from, for example, no anxiety to low
anxiety or very high anxiety. When a sufficient number of observations are recorded for various
trip purposes, the user perception of anxiety can be mapped to the “actual” probability of late
arrival (again derived from empirical data). These relationships can be used to correlate trip
purpose, trip maker characteristics, on-time performance and anxiety levels experienced which
when analyzed together inform the total generalized cost formulations.

CONCLUSIONS

Conventional generalized cost models fail to account for the impacts of reliability in attracting or
dissuading transit riders. We supplement previous work with a new, behaviorally based model
that explicitly quantifies the impacts associated with traveler anxiety generated by unreliable
transit service. We use a simulation model to compare the generalized cost estimates that
consider reliability versus conventional results for various traveler types. Our results suggest
that for risk intolerant travelers, unreliability in transit service can produce very high costs which
are likely to dissuade these individuals from choosing transit. Output from the simulation model
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also suggests that small changes in travel time reliability produce the potential for very high
travel costs for subsets of the population. We demonstrate that while anxiety in most cases
accounts for only 10% of the total generalized cost, in approximately 5-10% of cases, anxiety
may constitute more than 50% of total costs.

We recognize the complexity and difficulties associated with developing and calibrating models
of traveler behavior. We describe a survey technique that employs GPS enabled hand held
devices to gather sufficient data on traveler anxiety to develop meaningful weights for the
anxiety component of our generalized cost model.
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