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ABSTRACT 
This paper examines the impact of unreliable transit service on transit user costs with the goal of 
increasing the accuracy of mode choice models.  The concept advanced here is to include 
explicitly in the formulation of mode choice models the anxiety experienced by passengers when 
service is unreliable due to late departure or longer than expected in-vehicle travel time.  We 
model this anxiety as a generalized cost penalty which is added to actual in-vehicle time.  The 
magnitude of the penalty depends on the traveler’s assessment of the likelihood of arriving on 
time at his destination.  We feel this formulation of anxiety is behaviorally representative. 
 
To test the impacts of our formulation, we generate a simulation model that quantifies the 
anxiety component of generalized cost for 10,000 travelers with various aversions to risk for 
travel between station pairs with different observed reliabilities.   Our results suggest that 
primarily for risk averse travelers, but also for other classes, anxiety may constitute very high 
percentages of total generalized cost which may explain many travelers’ unwillingness to choose 
transit in cases where deterministic models suggest they will.   
 
Calibrating a model of this type presents substantial challenges.  We introduce an approach that 
we are currently pursuing to gather actual anxiety levels as a function of transit travel reliability.  
We conclude with comments on future research directions. 
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INTRODUCTION 
In the past decade, the importance of public transportation in achieving balanced transportation 
has increased throughout North America.  In Ontario, Canada, for example, the Provincial 
Government is proposing transit projects in excess of $17.5B prior to 2020 (1).  As a result, 
models that are used to estimate transit ridership have gained increasing attention from 
transportation planners and engineers.  Though various mode choice models exist, nearly all are 
based on a comparison of user cost (or disutility) for travel by available modes.  In order for the 
models to be effective, the modal costs should be representative of the “real-world” costs 
experienced by users. 
 
The way in which transit user costs are typically represented is through generalized costs which 
are calculated as a linear sum of monetary costs (the fare) and a series of travel time components 
converted to monetary units assuming a value of time.  Most commonly included times in a 
generalized cost equation are access to the transit system, waiting for a transit vehicle, in-vehicle, 
transfers (where appropriate) and sometimes egress from the vehicle to the final destination.   
 
In conventional generalized cost formulations, transit costs are most frequently considered to be 
deterministic.  While a deterministic representation of access time is probably sufficient, it is 
quite evident that great variability exists in waiting times and in-vehicle times and, as such, total 
costs experienced by transit users.  Generalized cost models should be constructed to incorporate 
stochastic cost components for waiting and in-vehicle times.   
 
The limiting factor to developing stochastic models of generalized costs was the availability of 
data for on-time system performance.  Given the increase in the use of Automatic Vehicle 
Location (AVL) for bus systems, it has become much less difficult to produce distributions of 
these travel time components.  The stochasticity of travel cost components have been reflected 
by Bates (2) Casello et al. (3) in mode choice models. These formulations include penalties for 
arriving prior to or later than a desired arrival time with the likelihood of experiencing arrival 
penalties estimated from empirically derived observations of transit service reliability.   
 
A second source of stochasticity in generalized cost models is derived from users’ cost 
perceptions which may differ based on trip purpose or, alternatively traveler characteristics (risk 
averse, risk neutral or risk tolerant).  This variability in users’ perceptions and therefore 
generalized cost has been modeled by defining penalties as a function of traveler class. 
 
In this paper, we extend previous models to investigate further users’ perceptions of in-vehicle 
time.  The model is grounded in the idea that unreliable departure times or in-vehicle times 
create passenger anxiety which influence traveler perception of in-vehicle time.  The concept 
developed here formally presents a methodology to complement typical generalized cost 
components with “anxiety costs” which are computed based upon stochastic departure times, in-
vehicle times, and potential late penalties for various traveler classes.  We suggest that this 
measurement of anxiety in light of stochastic travel components better represents traveler 
perception and is therefore more behaviorally representative than previous efforts.   
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The remainder of the paper is organized as follows.  We first briefly review the literature to 
document previous efforts at incorporating reliability in transit generalized cost formulations.  
We next present the theoretical motivation for and the details of the methodology developed.  
We then demonstrate a simplified example using data from the Regional Municipality of 
Waterloo.  After the case study, we describe the efforts necessary to calibrate a model of this 
type.  We conclude with comments on limitations and future research needs. 
 
LITERATURE REVIEW 
Mode choice models based on user cost have been used for decades.  A history and detailed 
explanation of these models’ formulation, calibration and solution are given by Ortuzar and 
Williumsen (4).  The basic formulation of generalized cost for transit used in this paper models 
that by Kittelson et al. (5).  More detailed generalized cost models, upon which we rely heavily, 
explicitly treat the penalties associated with discrete departure times of transit vehicles (2) as 
well as unreliable service(6).   
This paper builds heavily upon work done by the authors in 2009 (3).  For a much more detailed 
literature review, the reader is directed to the lead author’s most recent publication (7). 
 
The concept of anxiety as a travel cost has been discussed by Van der Waard (8), Hickman and 
Wilson (9) and Bhat and Sardesai (10) amongst others.  Anxiety has been explicitly considered 
as part of a boundedly rational model proposed by Mahmassani and Liu (11) in describing auto 
route choice.  Guiver (12) describes qualitatively the concept of travel anxiety on public 
transport.  We are unaware of any study that proposed to quantify the direct cost of anxiety in 
unreliable transit networks. 
 
METHODOLOGY 
As noted above, nearly all transit generalized cost functions assume in-vehicle time is least 
onerous, and constant.  In our model, we relax this assumption as follows.  We assume that the 
traveler disaggregates in-vehicle time as scheduled in-vehicle time (SIVT) and unscheduled in-
vehicle time (LATE).  Mathematically, LATE is computed as: 
 

Eq. 1 
 

Where AIVT is the actual in-vehicle time and all units are minutes.  If AIVT is less than SIVT, 
then LATE is less than 0, or an early arrival.  To these two components, we add a third term, 
ANX, that reflects anxiety felt in cases where service is behind schedule.  
 
If we assume the traveler chooses a bus departure for which the scheduled arrival time (SAT) at 
his destination is earlier than his necessary arrival time (NAT), we can evaluate the following 
scenarios: 

1. If that traveler boards the vehicle at or before the scheduled departure time (SDT), on 
very reliable systems, the traveler can be reasonably certain that he will arrive on time.  
In unreliable systems, despite boarding exactly on time, the traveler still has some 
uncertainty that the in-vehicle travel time will be sufficiently short to meet his necessary 
arrival time. 

2. If the actual in-vehicle time (AIVT) is less than or equal to the scheduled in-vehicle time 
(SIVT), then throughout the trip the passenger has decreasing concern about arriving late.  
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On the reliable system, the passenger may feel nearly zero anxiety.  On the unreliable 
system, the traveler feels slightly higher anxiety on early segments of the trip.   

3. If the bus departs later than the SDT, then the traveler begins the in-vehicle portion of the 
trip with some anxiety about his likelihood of arriving on time.  Subsequent trip segments 
are perceived as “higher cost” than the case where the bus departs on time. 

4. Recurringly during the trip (say at each stop), the traveler evaluates his likelihood of 
arriving on time based on scheduled travel time and historical knowledge.  If the bus 
“catches up” (recovers lost time) and regains the scheduled time, then the traveler’s 
anxiety lessens and is eventually eliminated.  In this case, the traveler experiences a 
shorter than expected SIVT and no late penalty.  In our formulation, however, we 
explicitly quantify the cost associated with the anxiety felt on the early segments of the 
trip. 

5. If the bus remains or falls further behind schedule, the traveler’s anxiety grows during the 
trip until at some point, there is 0 probability of arriving on time.  At this point, the 
anxiety for subsequent sections is constant at the maximum value. 

 
The travel time and perceived anxieties for scenarios 2, 4 and 5 are shown in Figure 1.  Here, the 
bus route contains an origin, O, a destination, D, and two intermediate stations Z, and Y.  The top 
part of the figure shows the time distance diagram of the bus relative to the SDT, the SAT and 
the NAT. The bottom part of the figure shows the probability of late arrival under two 
conditions: generally reliable bus service (R) and unreliable service (UR).  Note that the 
probability of being late, and therefore passenger anxiety, is always lower in the reliable service 
case. 
 
In the first case, the bus departs precisely at the scheduled departure time and the in-vehicle 
travel time is equal to the scheduled time.  The arrival time at the destination occurs earlier the 
necessary arrival time.  Anxiety begins with a positive value, but decreases after each station 
because the traveler recognizes the service as on time. 
 
In the second case, the bus departs late, resulting in higher initial anxiety than in the previous 
case.  During the trip, however, the bus is able to recover time.  At each station, the traveler’s 
anxiety is reduced again because he recognizes that his probability of late arrival is decreasing.  
As in the first case, the actual arrival time coincides with the schedule arrival time and the final 
probability of late arrival is zero. 
 
In the final case, the bus both departs late and experiences longer than expected travel times.  In 
this case, the initial anxiety is as high as in the previous case.  As the trip progresses, the 
likelihood of an on-time arrival decreases and, the probability of late arrival increases towards 
one.  By the time the bus reaches station Y, he is certain that an on-time arrival is not possible. 
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FIGURE 1 The Relationship between Departure Time, In-vehicle Time and Anxiety 

 
To quantify the costs of traveler anxiety we propose the following method. We assume the 
traveler assesses his likelihood of on-time arrival at each stop from boarding to destination along 
the route which, in turn, generates a level of anxiety.  We further assume that the traveler’s 
perception of the next inter-station in-vehicle travel time is dependent on the anxiety felt at the 
previous stop.  We calculate the anxiety cost on a segment from station i to station i+1 as the 
product of the probability of being late calculated at station i and the actual travel time from i to 
i+1.   
 
Mathematically, this is expressed as: 
 

  Eq. 2 

To compute the total anxiety experienced over the entire trip (from origin O, to destination D), 
we sum over all stations from origin to destination. 

 Eq. 3 

Equation 3 reflects the computation of the areas under the curves shown in the lower half of 
Figure 1. 
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The total contribution of in-vehicle cost to generalized cost with unreliable service, GCR, is then 
the sum of SIVT, LATE and the anxiety penalty: 
 

Eq. 4 

 
Where α and β are calibration parameters that weigh the relative importance of each component.  
As discussed above, in the case where AIVT<SIVT, then α defaults to 1 and LATE is actually 
negative, reducing the generalized cost of in-vehicle travel time. 
 
Our anxiety measure depends upon a traveler’s ability to assess the likelihood of being late from 
his current point to the destination, given the travel time experienced from the origin to his 
current point.  In reality, this depends upon a traveler’s familiarity with the system and historical 
knowledge of expected travel times.  In our model, we compute directly the probability of 
arriving late to the destination having traveled to each station i.   This probability is the 
likelihood of experiencing a travel time from i to D that exceeds the difference between the NAT 
and the arrival time at i; the arrival time at i is given by the sum of the actual departure time from 
the origin (ADTO) and the actual in-vehicle time to i, (AIVTO,i).  Mathematically, this is 
expression is: 
 

Eq. 5 

All terms on the right hand side of the inequality - the necessary arrival time, the actual departure 
time from the origin, and the travel time from the origin to i - are known.  As such, the 
probability of an on-time arrival is simply given by the probability of a travel time from i to D 
less than a constant.  This is a cumulative probability distribution function for travel time 
between stations.  Using Automatic Vehicle Location (AVL) data, it is a straightforward exercise 
to derive these CDFs from which we can easily solve equation 5 for any station i along the route. 
 
Figure 2 displays the logic of the approach graphically.  At the origin, there is a distribution of 
potential departure times for the service around scheduled departure time.  There is also a 
distribution of actual travel times from O to D, shown on the right hand side of Figure 2.  The 
likelihood of being late with an on-time departure can be seen by area under the dashed 
distribution that exceeds the NAT.  In this case, the actual departure time of the vehicle from the 
origin occurs sometime later than the scheduled time.  This shifts the distribution of travel times 
to the right by the same amount as the lateness of departure which increases the likelihood of 
being late.  This is shown by the increase in area under the solid curve which falls to the right of 
the necessary arrival time along the O line. 
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FIGURE 2 Graphical Representation of Probability Functions 

 
Moving up from the origin to station Z, two characteristics change.  First, the travel time 
distribution from Z to D narrows relative to the travel time distribution from O to D reflecting the 
shorter distance remaining to travel.  Second, because the service has fallen further behind from 
O to Z, the distribution of travel times from Z to D has shifted right by the amount the service is 
late, increasing the probability of a late arrival.  At Y, the distribution once again narrows due the 
proximity to the distribution; also from Z to Y, the bus recovers time, shifting the travel time 
distribution left and decreasing the likelihood of late arrival. 
 
APPLICATION OF METHODOLOGY 
To test the implications of the above formulation, we develop a simulation model for the bus 
system serving the Regional Municipality of Waterloo (Ontario).  The Region’s transit operator, 
Grand River Transit (GRT), runs iXpress service, a 33 km limited-stop route with 13 stops. The 
alignment, shown in Figure 3 connects four downtowns - Waterloo, Kitchener and two in 
Cambridge - as well as two universities, office complexes, major hospitals and regional shopping 
centers.  iXpress operates throughout the day with 15 minute headways and vehicles are 
equipped with AVL technology. 
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FIGURE 3 iXpress Route Serving Waterloo, Kitchener and Cambridge 

 
Model Formulation 
We are interested in understanding how reliability (or the lack thereof) influences users’ 
perception of in-vehicle travel time, and how those perceptions should be reflected in generalized 
costs.  To this end, we simulate 10,000 peak hour trips between two origin destination pairs.  The 
first trip begins at the Charles St. Terminal in Kitchener and ends at the route’s southern 
terminal, Ainslie St.  Including the boarding station, there are five locations at which the 
probability of being late must be evaluated.  The second trip considered originates at Fairview 
Mall traveling northbound to Conestoga Mall, with nine intermediate stops. Table 1 shows a 
statistical representation of travel times between each station pair derived from more than 600 
actual AVL observations of travel time. 
 
Table 1 Statistical Parameters for the Station Pairs Modeled 

Statistical Characteristic 
Charles St. to 

Ainslie 
Fairview to 
Conestoga 

Scheduled travel time (min) 42 43 
50th percentile difference between SDT and ADT (min) 0.40 0.40 
90th percentile difference between SDT and ADT (min) 1.92 4.62 
 
The data in Table 1 suggest that while 50% of buses depart both Charles St. and Fairview with 
0.40 minutes (24 seconds) of the scheduled departure time.  However, the departures from 
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Fairview have much greater variance than those from Charles St.  Only 10% of the buses leaving 
Charles St. do so more than 1.92 minutes after the scheduled departure time.  In contrast, 10% of 
buses leaving Fairview towards Conestoga leave more than 4.62 minutes late.  This may indicate 
that passengers leaving Fairview experience greater anxiety on early segments of their trips. 
 
For each of the 10,000 trips, we generate travelers with one of three different but equally likely 
trip characteristics.  A traveler may be risk averse, moderately risk averse or risk neutral.  The 
perception of potential delays decreases in severity with decreasing risk aversion.  As such, the 
values for α (when LATE>0) are 3, 2 and 1 for risk averse, moderately risk averse and risk 
neutral passengers respectively.  Similarly, the values for β are 2.5, 1.85 and 1.0 in the same 
order of passenger types. 
 
For each traveler, we next estimate necessary arrival times that are uniformly distributed between 
two subsequent arrivals at the destination station.  To model bus service, we use observed AVL 
data to generate the following parameters in the simulation model: 

1. Actual departure time from the origin station; 
2. Actual travel time between each set of stops; 
3. Probability of being late at the destination given the actual departure time, the travel time 

from the origin to the current stop, and the necessary arrival time. 
 
Model Results 
For each traveler, the model outputs the AIVT, the corresponding late penalty (or benefit), the 
probabilities of late arrival computed at each stop, and the total generalized cost considering 
reliability, GCR.  We present three comparisons.  First, we demonstrate how the range of 
observed GCR values compare to the conventional GCC estimates that are deterministic.  The 
results for two traveler cases, the Risk Averse Person (RAP) and the Risk Neutral Person (RNP) 
are shown on the left and right respectively for the Fairview trip in Figure 4 below.  The heavy 
vertical lines represent GCC.  The intervals represent eight units of generalized cost. 
 

 
Figure 4 Comparing Generalized Cost with and without Reliability Considerations 

The model predicts approximately 3300 RAP and RNP travelers.  From the figure, we see that 
approximately 2300 RAP (or 70%) experience GCR that are within one interval of the GCC.  
Similarly, 2600 RNP travelers are within the same tolerance.  However, we notice that for RAP, 



Nour, Casello, and Hellinga  11 

there exists a long tail to the right, indicating that for many RAP travelers, the potential exists to 
experience very unreliable, very high cost travel by transit.  In fact, our model predicts that 758 
RAP travelers experiences GCR in excess of 60, or 50% higher than what would be predicted by 
GCC.   For RNP, the number of passengers experiencing very high GCR is less, about 312, but 
still not insignificant. 
 
Next, we demonstrate how GCR differs for the same traveler type, Risk moderate passengers 
(RMP), for the two station pairs selected for analysis.  Figure 5 shows the range of GCR results 
for the lower reliability pair (Fairview to Conestoga) on the left and the higher reliability pair 
(Charles St. to Ainslie) on the right.  Again, the intervals displayed represent eight minutes. 

 
Figure 5 Reliability Influences on Travelers with Different Risk Tolerances 

For lower values of GCR, the frequencies of occurrence are very similar.  Both station pairs show 
high concentrations of observations (approximately 2500 in both cases) within one interval of the 
expected GCR.  It is evident, however, that the unreliable travel pair again has many more 
observations of very high GCR when compared to the higher reliability case.  In fact, the number 
of GCR observations exceeding 80 (or approximately double the deterministic GCC) is 330 (10% 
of trips) in the unreliable case, but only 152 (approximate 5%) for the reliable travel pair.   
 
Finally, it is interesting to understand the relative importance of the anxiety component to overall 
GCR.  To this end, we plot in Figure 6 a histogram of the percent of total GCR attributable to 
anxiety for RAP (left) and RNP (right) travelers. In this case, the intervals are 5%. 
 

 
Figure 6 Percent of Total Generalized Cost Attributable to Anxiety 
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As in the previous example, anxiety has much greater impacts on risk averse passengers than on 
risk neutral.  For nearly 2,000 RAP, anxiety constitutes 10% or less of the total GCR while for 
RNP, that number increases to more than 2400.  Also similar to the previous example, the RAP 
have a much longer right tail of the distribution, indicating that in many cases, 458 or nearly 
14%, anxiety is the primary component of GCR.  For only 125 RNP, anxiety penalties exceed 
50% of GCR; anxiety never constitutes more than 70% of GCR for RNP.   
 
CALIBRATING THE MODEL 
The model results presented above make assumptions about the relative importance of longer 
than expected in-vehicle time and the anxiety felt as the likelihood of late arrivals increases.  At 
this moment, we have little basis for the relative weights assumed other than they are within the 
range of values presented in the literature (5) for other travel time components and they follow 
the logic that a risk averse traveler would perceive late arrivals as less tolerable than a risk 
moderate or risk neutral passenger.  Calibration of the magnitude of the anxiety penalty is 
obviously necessary to make functional the model form we present here.   
 
In order to gather data on in-vehicle anxiety levels, we propose to utilize GPS enabled, hand held 
devices to query bus passengers regarding current levels of dissatisfaction.  These devices can be 
programmed with all transit schedules; their GPS capabilities allow the devices to identify the 
current route and schedule adherence without user input (13).  We are in the process of 
developing code through which the hand held device recognizes stop locations at which it 
computes the existing schedule adherence and probability of on-time arrival.  The user will 
automatically be prompted by the device to indicate his current level of anxiety with the route 
performance.  The data gathering may include simple drop-down menus with quantitative inputs.  
One example question may be to ask respondents to indicate their expected “likelihood of on-
time arrival” and provide options ranging from 0%, 20%, 40% through 100%.  These user 
perceptions can then be directly compared to the “actual” likelihood derived from empirical 
observations.  The differences between perception and reality help to inform the nature of a 
transit rider’s anxiety.   
 
Alternatively, users may be prompted to provide qualitative indicators of anxiety using voice 
recording.  A range of anxiety levels may be provided from, for example, no anxiety to low 
anxiety or very high anxiety.  When a sufficient number of observations are recorded for various 
trip purposes, the user perception of anxiety can be mapped to the “actual” probability of late 
arrival (again derived from empirical data).  These relationships can be used to correlate trip 
purpose, trip maker characteristics, on-time performance and anxiety levels experienced which 
when analyzed together inform the total generalized cost formulations. 
 
CONCLUSIONS 
Conventional generalized cost models fail to account for the impacts of reliability in attracting or 
dissuading transit riders.  We supplement previous work with a new, behaviorally based model 
that explicitly quantifies the impacts associated with traveler anxiety generated by unreliable 
transit service.  We use a simulation model to compare the generalized cost estimates that 
consider reliability versus conventional results for various traveler types.  Our results suggest 
that for risk intolerant travelers, unreliability in transit service can produce very high costs which 
are likely to dissuade these individuals from choosing transit.  Output from the simulation model 
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also suggests that small changes in travel time reliability produce the potential for very high 
travel costs for subsets of the population.  We demonstrate that while anxiety in most cases 
accounts for only 10% of the total generalized cost, in approximately 5-10% of cases, anxiety 
may constitute more than 50% of total costs.  
 
We recognize the complexity and difficulties associated with developing and calibrating models 
of traveler behavior.  We describe a survey technique that employs GPS enabled hand held 
devices to gather sufficient data on traveler anxiety to develop meaningful weights for the 
anxiety component of our generalized cost model. 
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